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Multiwavelength pyrometry has been advertised as giving significant improve- 
ment in precision by overdetermining the solution with extra wavelengths and 
using least squares methods. Hiernaut et al. [ 1 ] have described a six-wavelength 
pyrometer for measurements in the range 2000 to 5000 K. They use the Wien 
approximation and model the logarithm of the emissivity as a linear function of 
wavelength in order to produce linear equations. The present work examines the 
measurement errors associated with their technique. 

KEY WORDS: high temperatures; multiwavelength pyrometry; pyrometry, 
temperature measurements. 

1. I N T R O D U C T I O N  

Hiernaut et al. [ 1 ] have described a six-wavelength pyrometer for measure- 
ments in the range 2000 to 5000 K. Hiernaut et al. [2] used this instrument 
to measure the melting point and emissivity of refractory metals. They 
assume the Wien approximation and take the logarithm of the emissivity 
as a linear function of wavelength. They obtain six equations relating the 
measured intensities at the six wavelengths to the spectral model. The 
pairwise combination of these equations to eliminate the constant term in 
the emissivity model gives 15 independent equations. Chi-square fits using 
the 15 equations allows a linear least-squares determination of the tem- 
perature and the wavelength coefficient for the logarithm of the emissivity. 
Back substitution then determines the constant term. The present work uses 
the Monte Carlo method to examine the precision of the technique, its 
dependence on the spectral span of the wavelengths chosen, the choice of 
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weight function used in the X 2 fit, and the degree of improvement achieved 
by using multiple wavelengths to overdetermine the solution. Since Hiernaut 
et al. [2]  observed the emissivity to be either an increasing or a decreasing 
function of wavelength, depending on temperature, both situations are 
examined. In addition, the effect of using logarithmic amplifiers is 
considered. 

2. MATHEMATICAL D E V E L O P M E N T  

We assume from the outset that the Wien approximation is an 
adequate approximation to the Planck spectrum for the temperature range 
of interest. For  linear amplifiers, we take the output voltage V~ for channel 
i proportional to the intensity JR(2i, T) through a transfer function A /  

Vi = AiJR(2i, T) = Aie(2,) c~e-C2/X'r/2~ (1) 

where c~ and c2 are the standard radiation constants and we assume 

In e(2/) = a0 + al 2~ (2) 

For  convenience, set Ai = 1. For  brevity, let us define 

Ri~- Jg(~i, T) (3) 

and 

fli = ln(~Ri /Cl  ) (4) 

We then have 

fli = ao + al )ci-- c2/2i T 

Define the difference 

(Pij = ( f l i -  f l j ) / ( ) , i -  ,~j) = al § c2/T2i2j 

Let a2 = c2/T so that we can write 

For  n channels, 
given by Eq. (7): 

(5) 

(6) 

~oij = al + a=/2i2j (7) 

we have n ( n - 1 ) / 2  independent equations of the form 

q)~=al+a=/2i2j ,  i =  1,..., n--  1, j = i + l , . . . , n  (8) 



Multiwavelength Pyrometry 363 

We define chi-squared as 

Z 2 = ~ ,  --~. ( (p*  - -  a 1 - -  a2/~i.,~j) 2 (9) 
i = 1  j = i + l  ij 

Where  the asterisk denotes values obtained from measurements,  and a 2 is 
the variance of ~o*. We minimize X 2 with respect to al and a2: 

n-- 1 

Oal i=1 j=i+l 

exA: -2 2 
63a2 i= 1 j = i+ 1 

1 
0----2ij ( q) i~ - -  a l - -  a2/2,)~j) = 0 (10) 

1 
0-~ (+*  - a ,  - a2/:~g+)/,~gj = o (11) 

We have 

G = M - 6  (12) 

Where  

i = 1  j = i + l  G2 

n 1 n 1 

i = l  j = i + l  0-0 

M 2 2 = " y x  ~ 1 1 

i=1 j= i+l  0-2 ()~i):j)2 , 

"y/ ~ 1+* 
G2 = a2 2i2j 

i = 1  .]= i +  1 

M12 = M21 = 
i = 1  j=i-+-I  0 -2 i jX i~  

d =  (al ,  a2) 

(13) 

Solution may  be obtained for al and a2 by Gauss elimination, then 

ao = fl* -- al,~l q- a2/21 (14) 

and finally, 

T =  c 2 / a  2 (15) 

2.1. Linear Amplifiers 

so that 

V i =  A i R  i (16) 

fl~ = ln(2~ Vi/c I A ~) (17) 
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Now to first order  

<,2 = ( ~ , ~ 2  
e, \SVfl 

where a 2 is the variance of the voltage V,. 

= 1 / v ,  

so that 

(18) 

(19) 

Substituting, we obtain 

8~o,j_ 1/(2,- 2j) (23) 

4 = (<4, + ,~,)/{,~,- x,) 2 

Substituting Eq. (20) we have 

0.2 = [ (~ilVi)2 ~_ (~jlVj)2]l( l~i_ ~,j)2 

N o w  consider the case of constant  relative errors: 

cr i = ~ V i 

where co is a constant.  We have 

a 2 = 2c02/(2,-  2;) 2 

(24) 

(25) 

(26) 

(27) 

and 

~2 _ (~ , / vD2  (20) f l i -  

Also, to first order,  we have 

(&00~ 2 2 ._l_ (6~(#9/J~ 20. 2 (21) 

Where we assume the voltage measurements  in the channels are inde- 
pendent  of each other. The /7 i are thus uncorrelated,  and there is no 
covariance. F r o m  Eq. (6) we have 

8/7i = 1 / ( 2 , -  2j) (22) 
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and the factor 2092 will factor out  of Z 2, SO that  we can write 

n 1 
Z2 = E ~ (.~i- .~j)2 (q ) i~  - a~ - a 2 / . ~ i . ~ j )  2 (28) 

i - 1  j - i + l  

N o w  consider the case where the errors are equal to a constant  
fraction of the max imum signal seen in a channel, as when determined 
by trace width on an oscilloscope or discriminator spacing with a digital 
recorder. 

We have 

ai = 09 Vi(max) (29) 

and again, the factor of  0)2 will factor out of )~2. 

2.2. Logarithmic Amplifiers 

We assume 

We have 

g i = A i in Ri (32) 

In Ri = ln(cl/2~) + ao + a~ 2 i -  a2/2i = fli (33) 

so that  

We again have Eq. (9) with ~o 0. defines as before. Solution for ao, a l ,  and 
T follow the same path. 

N o w  

fl~ = 1n(2~/cl) + In R~ = ln(2~/c~) + V ] A i  (34) 

We see that  the relationship between Vi and fig has changed. 

= 1 / A i  (35) 
OV~ 

a 2 - (0/~i']2 cr2 = (ai/A/) 2 (36) 

(ai/Vi) 2 = co2(Vi(max)/Vi) 2 (30) 

0) 2 
a 2. [ ( V i ( m a x ) / V i ) 2 + ( V j ( m a x ) / V s )  z ] (31) 
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and we have 

1 
0"2._ _ _  [ (0" , /A  i)2 + (0"jAj)2] (37) 

2 

Now consider the case of constant relative errors given by Eq. (26). We 
have 

0"i/Ai = ( 0 V i / A  i (38) 

or  

(0 2 
0"2 -- ( J [ i -  ,~,j)2 [-(Vi/Ai) 2 + ( V j / A j )  2 ] (39) 

For  convenience, we take the case A i = A = constant, so that 

0"2= (co/A)2 (V 2 + V~)/(2 _ 2j)2 (40) 

((0/A)2 will factor out of )~2 and have no effect on the relative weights. 
Now consider the case where the errors are proportional  to the 

maximum signal seen in a channel (and the same fraction for each channel) 

0"i = (0 Vi  (max) (41) 

0" i /A  i = (0 V i ( m a x  ) /A  i (42) 

and we have 

(/)2 
0.2 = ( 2 i -  2j) 2 [(Vi(max)/Ai)2 + (Vj(max)/Aj)2] (43) 

As before, consider A i =  A = constant, so that ((O/A) 2 will factor out of 22. 
We have 

1 
a2 . -  - -  [V~(max) + VZ(max)] (44) 

3. C O D E  M E T H O D S  

A generator code was written to create exact artificial data for a linear 
ramp of temperature versus time and for a given pyrometer  configuration 
(wavelengths, amplifier type). A random number generator is then used 
to alter the exact data for the specified type of error and create artificial 
data in batches for a large number of runs. A random seed is used at the 
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beginning o f  each run. A data reduction code then reduces the batches of 
data, leaving a dropfile of the results, to be evaluated by a third code which 
does the statistical analysis. 

Experiments were made using 100 runs and 500 runs. Since we have 
a ramp of results versus time (or true temperature), curve-fitting methods 
can be used to smooth the results for 100 runs. The smoothed results were 
in good agreement with the trials using 500 runs. It is thus possible to 
reduce the amount of computer time used for a problem by about a factor 
of five by using 100 runs and curve-fitting methods. Overall, best results are 
generally obtained by least-squares fitting a quadratic to the results. The 
reduction in computer time needed makes it possible to explore more 
variables. 

Two methods were used to calculate the emissivity at each time point. 
The mean values of ao and a 1 were determined at each point and used to 
calculate the emissivity for each wavelength at that time. The emissivity 
e[~io(ti), ~l(ti), 2k] is thus calculated. As an alternative, the emissivity for 
every run, wavelength, and time point was calculated and averaged over 
runs at a given time point to give g(ti, 2k). It was found that the technique 
of averaging ao and a 1 first gives better results, and it was thus chosen. 
As a result, however, the true standard deviation of the emissivity cannot 
be calculated. Instead, the percentage deviation of e from the smoothed 
result is used. A quadratic fit to the amplitude of the percentage deviation 
of e from the smoothed value is also made to give further smoothing. 
These results are also plotted as a function of true temperature for each 
wavelength. 

Two types of random error are considered. The first considers 2 % uni- 
formly distributed random relative errors (every artificial exact data voltage 
is multiplied by a random number uniformly distributed between 0.98 and 
1.02). For  this case a large range of temperature can be examined at one 
time. Since the Wien approximation is used, the range 1000 ~< T~< 4000 K 
was chosen. For  the second case, which is more representative of experi- 
mental data, the errors introduced were in the range plus or minus 0.02 
times the maximum signal seen in each channel. For this situation, the 
dynamic range considered must be restricted, since at low signal levels, the 
injected errors cannot be allowed to produce negative signals, for which 
there is no solution. The temperature range 3000 ~< T~< 4000 K was chosen. 
For  convenience, we refer to this case as that of absolute errors. 

Since the wavelength dependence of the emissivity has some influence 
on the results, two cases were considered: an emissivity that decreases with 
wavelength (characteristic of solid metals) from 0.5 at 500 nm to 0.2 at 
1040 nm and one that increases with wavelength (characteristic of liquid 
metals) from 0.2 at 500 nm to 0.5 at 1040 nm. 

840/13/2-11 
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Statistical improvement achieved by overdetermining the solution with 
extra wavelengths is examined by calculating the standard deviation of the 
temperature and the scatter in the emissivity at each wavelength for the 
cases of three, four, five, and six wavelengths. The importance of the weight 
function used in the Z 2 fit is also examined. 

It has already been established that the use of logarithmic amplifiers 
is convenient for reducing the amount of recording equipment needed, but 
at the price of sacrificing precision. A few cases are thus examined using 
both linear and logarithmic amplifiers for comparison. 
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Fig. 1. Temperature results for six wavelengths, 
500-1040 nm, linear amplifiers, al <0,  and 2% 
uniformly distributed random relative errors, 
using unweighted fits. 
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4. RESULTS FOR RELATIVE ERRORS 

4.1. Influence of Spectral Span 

We consider six wavelengths, linear amplifiers, and unweighted fits in 
the Z 2 calculation. 

4.1.1. Five Hundred to One Thousand Forty Nanometers 

This corresponds to the configuration used by Hiernaut et al. [1]. 
Figure 1 shows the temperature results. The standard deviation for the 
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Fig. 2. Emissivity behavior for the extreme 
wavelengths, for six wavelengths, 50(~1040 nm, 
linear amplifiers, a l < 0  , and 2% uniformly 
distributed random relative errors, using 
unweighted fits. 
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temperature increases in an approximately linear fashion from 0.48% at 
1000 K to 1.83% at 4000 K. The temperature shows an increasing bias 
upward to about 1% at 4000 K. Figure 2 shows the emissivity behavior for 
the two extreme wavelengths. 

It can be seen that the emissivity rolls off about 7% at 4000 K for 
500 nm. The effect is progressively less for the longer wavelengths. A simple 
analytical argument shows that the shift in both temperature and emissivity 
is due to the use of the Wien approximation. As confirmation, a problem 
was run substituting the Wien spectrum for the Planck spectrum in the 
generating code. The systematic shift completely disappeared. [In the 
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normal situation the generator code uses the Planck spectrum, since that 
is the true blackbody spectrum found in nature. Data reduction using the 
Wien approximation is an attempt to use the wrong spectrum to fit the 
data. If we (temporarily) use the Wien spectrum in the generator, the Wien 
approximation is no longer an approximation, and errors from this cause 
vanish.] 

Figure 3 shows the emissivity behavior for all wavelengths. The 
greatest scatter occurs for the short wavelengths. At 1000 K the errors 
in the smoothed results are negligible. Figure 4 shows the percentage 
deviation of the emissivity from the smoothed result. The quadratic fits to 
the amplitude of the deviation are shown in the figure. It can be seen that 
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the worst case is about 1% for 500 nm at about 1000 K. The deviation is 
progressively less for the longer wavelengths. It may be noted that for a 
given temperature, the emissivities for the various wavelengths appear 
perfectly correlated. This is because the emissivity was calculated using 
~[~o(t~), ~ ( t i ) ,  2k] so that for each time point t~, or temperature, the 
same values for ao and a~ were used for each wavelength. In the generator 
code, every data point was altered separately so that there is actually no 
correlation between the data for different wavelengths. 
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4.1.2. Six Hundred Eighty to Nine Hundred Nanometers 

Figure 5 shows the temperature results. The standard deviation has 
increased approximately eightfold at all temperatures. This is caused by a 
60% decrease in spectral span. In addition, the systematic temperature 
error has increased more than threefold at 4000 K. Clearly this pyrometry 
technique is highly sensitive to spectral span. As a result, for studies of 
other variables, the spectral span was kept constant. Figure 6 shows the 
emissivity behavior, and Fig. 7 shows the degree of scatter in the emissivity 
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results. Both systematic error and scatter have increased markedly. The 
smoothed scatter ranges from 4 % to about 8.5 %. 

4.2. Influence of Logarithmic Amplifiers 

Again, we consider six wavelengths and unweighted fits, with a 
wavelength span from 500 to 1040 nm, and an emissivity decreasing with 
wavelength. Figure 8 shows the temperature results. The standard deviation 
varies from about 8.7 % at 1000 K to about 2.0 % at 4000 K. The upward 
bias of the temperature at 1000 K is probably not statistically significant. 
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Figure 9 shows the emissivity behavior and Fig. 10 shows the degree of 
scatter. It is evident from comparison of Figs. 1, 3, and 4 with Figs. 8, 9, 
and 10 that the use of logarithmic amplifiers produces a significant penalty 
in precision, especially for the lower temperature signals. Again, the largest 
emissivity scatter is seen for the short wavelengths. 

4.3. Influence of the Number of Wavelengths Used 

For the problem considered in Figs. 1 through 4 with linear amplifiers, 
emissivity decreasing with wavelength, a spectral span from 500 to 1040 rim, 
and unweighted fits, smoothed and unsmoothed temperature standard 
deviations a~ for three, four, five, and six wavelengths are shown as a 
function of temperature in Fig. 11. It can be seen that improvement in 
precision is not monotonic and little, if any, improvement is achieved 
beyond four wavelengths. 

4.4. Influence of Weight Functions 

The data used for the results shown in Figs. 1 through 4 were repro- 
cessed using the correct weight functions. Only a slight improvement was 
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Fig. 14. Emissivity results for six wavelengths, 500-1040nm, 
linear amplifiers, a~ < 0, and errors proportional to 2 % of the maxi- 
mum signal for each channel, using unweighted fits. 
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seen, and it is probably not statistically significant. The use of correct 
weight functions is thus not important for this scheme. 

5. RESULTS FOR A B S O L U T E  ERRORS 

Again, we consider linear amplifiers, unweighted fits, and a spectral 
span from 500 to 1040 nm for three, four, five, and six wavelengths. 

Figure 12 shows smoothed and unsmoothed aT versus temperature for 
three, four, five, and six wavelengths. Comparison of Figs. 11 and 12 shows 
that the character of the errors present is important. For absolute type 
errors, as expected, the largest percentage errors occur for the weakest 
signals, corresponding to the lower temperatures. In addition, there is no 
consistent statistical improvement achieved by adding additional wave- 
lengths. Figure 13 shows the temperature behavior for six wavelengths. 
The combination of the results of the Wien approximation at the high 
temperatures and the increasing relative error at the low temperatures 
produces a bias of about +0.8% in the temperature. Figures 14 and 15 
show the emissivity behavior. The increase in the scatter for short wave- 
lengths and low temperatures is evident. 
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Fig. 15. Percentage deviation amplitude of emissivity from the 
smoothed values for six wavelengths, 50(~1040nm, linear 
amplifiers, a 1 < 0, and errors proportional to 2% of the maximum 
signal for each channel, using unweighted fits. 
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The influence of the weight functions for absolute errors was also found 
to be minor. In the 22 fits the equations for al and a 2 are triangularized 
using Gauss elimination. The first variable obtained in the back substitution 
phase is az (or the temperature), hence it is least sensitive to error. Detailed 
examination shows that use of the correct weight functions causes the left- 
and right-hand sides of the equation for a2 to be multiplied by nearly equal 
numbers, so that the influence on results is minor. 

6. CO MPARISO N WITH EXPERIMENT 

Hiernaut et al. [2] show measurements of emissivity for tungsten as a 
function of temperature and wavelength. The largest scatter occurs for the 
shortest wavelengths and lowest temperatures. This is consistent with 
predictions for linear amplifiers and absolute type errors, as shown in 
Fig. 14. 

7. CONCLUSIONS 

This pyrometry method is quite sensitive to spectral span. For linear 
amplifiers and 2 % uniformly distributed random relative errors, a 60 % 
reduction in span causes the standard deviations to increase approximately 
eightfold. Statistical improvement achieved by overdetermining the solution 
with extra wavelengths is at best very minor, and does not increase 
monotonically with the number of wavelengths, for either type of error 
considered. 

For typical experimental apparatus, the measured emissivities will 
have the greatest relative error for the lower temperatures (because of 
weaker signals there) and for the shortest wavelengths. This is in agreement 
with published results. The use of multiple recording devices with different 
sensitivities can be used to avoid large relative errors for the lower end of 
a temperature range considered. 

The temperature errors produced by use of the Wien approximation 
are influenced by the spectral span. For 500-1040nm, the calculated 
temperature at 4000 K is about 1% high. For 680-900 rim, it is about 
3.5 % high. 

Unweighted fits may be used without significant degradation of results, 
and the results are insensitive to the wavelength slope of the emissivity. 
All of the above analysis was repeated for an emissivity increasing with 
wavelength. There was a slight reduction in the standard deviations at 
high temperatures, but otherwise all results were qualitatively the same. 
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Logarithmic amplifiers are quite undesirable because of the penalty in 
precision. 

Comparison of Figs. 3 and 14 shows that whether the errors are of the 
relative or absolute type, the greatest emissivity shift from the true values 
occurs for the shortest wavelengths and the highest temperatures. 

Gardner [3] also studied least-squares fitted multiwavelength 
pyrometry using six wavelengths and unweighted fits, linear amplifiers, and 
uniformly distributed random relative errors. He assumed the logarithm of 
the emissivity to be a linear function of wavelength and used the Wien 
approximation. The temperature range 600 to 1600 K was considered, and 
two emissivity models were used: a gray body with e = 0.5 and tungsten. 
He also examined the influence of spectral span, using both the range 750 
to t000 nm and the range 750 to 1600 nm. The errors increased three- to 
fourfold for the shorter interval. His study used only 10 runs to calculate 
the mean and standard deviation for the temperature, however. This is not 
statistically significant for examining improvement achieved by increasing 
the number of wavelengths used, since one must study a second-order 
effect: variation in the variance. 

Gardner et al. [43 built an instrument utilizing the design considered 
and used it to measure surface temperatures for various metals. 

Coates [5] also studied the least-squares approach to multiwavelength 
pyrometry using the Wien approximation, and taking the logarithm of the 
emissivity as a linear function of wavelength. He concluded that a narrow- 
band pyrometer, with a crude estimate of the emissivity, will in general 
yield a more reliable estimate of the temperature than any form of multi- 
wavelength pyrometer. These conclusions are consistent with this work. 
Beyond about four wavelengths, little further improvement is seen. In 
situations where the emissivity is unknown, and expected to be a function 
of wavelength, multiwavelength pyrometry assuming a linear variation with 
wavelength for the logarithm of the emissivity can be expected to give 
better results than the graybody assumption, provided the emissivity model 
is reasonable for the portion of the spectrum considered. 
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